Ultraviolet Raman Wide-Field Hyperspectral Imaging Spectrometer for Standoff Trace Explosive Detection.
نویسندگان
چکیده
We constructed the first deep ultraviolet (UV) Raman standoff wide-field imaging spectrometer. Our novel deep UV imaging spectrometer utilizes a photonic crystal to select Raman spectral regions for detection. The photonic crystal is composed of highly charged, monodisperse 35.5 ± 2.9 nm silica nanoparticles that self-assemble in solution to produce a face centered cubic crystalline colloidal array that Bragg diffracts a narrow ∼1.0 nm full width at half-maximum (FWHM) UV spectral region. We utilize this photonic crystal to select and image two different spectral regions containing resonance Raman bands of pentaerythritol tetranitrate (PETN) and NH4NO3 (AN). These two deep UV Raman spectral regions diffracted were selected by angle tuning the photonic crystal. We utilized this imaging spectrometer to measure 229 nm excited UV Raman images containing ∼10-1000 µg/cm2 samples of solid PETN and AN on aluminum surfaces at 2.3 m standoff distances. We estimate detection limits of ∼1 µg/cm2 for PETN and AN films under these experimental conditions.
منابع مشابه
Highly Selective Standoff Detection and Imaging of Trace Chemicals in a Complex Background using Single-Beam Coherent Anti-Stokes Raman Spectroscopy
A sensitive, non-destructive and highly selective method of standoff detection using coherent anti-Stokes Raman spectroscopy (CARS) is presented. The approach uses a single amplified femtosecond laser to generate high resolution (<10cm) multiplex CARS spectra encompassing the fingerprint region (400cm – 2500cm) at standoff distance. Quantitative studies of this method result in detection of 2μg...
متن کاملUV gated Raman spectroscopy for standoff detection of explosives
Real-time detection and identification of explosives at a standoff distance is a major issue in efforts to develop defense against so-called improvised explosive devices (IED). It is recognized that the only method, which is potentially capable to standoff detection of minimal amounts of explosives is laser-based spectroscopy. LDS technique belongs to trace detection, namely to its micro-partic...
متن کاملCurrent Ground-based Lwir His Remote Sensing Activities at Defense R&d Canada - Valcartier
Recently, DRDC Valcartier has been investigating novel ground-based longwave hyperspectral imaging (HSI) remote sensing techniques. Specific projects include the development of a new ground-based sensor called MoDDIFS (Multi-Option Differential Detection and Imaging Fourier Spectrometer), which is a leading edge infrared (IR) hyperspectral imaging (HSI) sensor optimized for the standoff detecti...
متن کاملCompact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.
We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied spectroscopy
دوره 71 2 شماره
صفحات -
تاریخ انتشار 2017